23 citations to https://www.mathnet.ru/eng/rm157
  1. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
  2. Dragovic V., Gontsov R., Shramchenko V., “Triangular Schlesinger Systems and Superelliptic Curves”, Physica D, 424 (2021), 132947  crossref  isi
  3. Komeda J., Matsutani Sh., “Jacobi Inversion Formulae For a Curve in Weierstrass Normal Form”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 383–404  isi
  4. Komeda J., Matsutani Sh., Previato E., “The SIGMA Function For Trigonal Cyclic Curves”, Lett. Math. Phys., 109:2 (2019), 423–447  crossref  mathscinet  zmath  isi  scopus
  5. Ayano T., “SIGMA Functions For Telescopic Curves”, Osaka J. Math., 51:2 (2014), 459–480  mathscinet  zmath  isi
  6. Matsutani Sh., Previato E., “Jacobi Inversion on Strata of the Jacobian of the C-Rs Curve Y(R) = F(X), II”, J. Math. Soc. Jpn., 66:2 (2014), 647–692  crossref  mathscinet  zmath  isi  scopus  scopus
  7. John Gibbons, Shigeki Matsutani, Yoshihiro Ônishi, “Relationship between the prime form and the sigma function for some cyclic (r,s) curves”, J. Phys. A: Math. Theor, 46:17 (2013), 175203  crossref  mathscinet  zmath  isi  scopus  scopus
  8. JIRYO KOMEDA, SHIGEKI MATSUTANI, EMMA PREVIATO, “THE SIGMA FUNCTION FOR WEIERSTRASS SEMIGROUPS 〈3, 7, 8〉 AND 〈6, 13, 14, 15, 16〉”, Int. J. Math, 2013, 1350085  crossref  mathscinet  zmath  isi  scopus
  9. Trans. Moscow Math. Soc., 74 (2013), 245–260  mathnet  crossref  mathscinet  zmath  elib
  10. J. C. Eilbeck, S. Matsutani, Y. Onishi, “Addition formulae for Abelian functions associated with specialized curves”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369:1939 (2011), 1245  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
1
2
3
Next