15 citations to https://www.mathnet.ru/eng/rcd709
-
Ctirad Klimčík, “Superintegrability, symmetry and point particle T-duality”, Int. J. Geom. Methods Mod. Phys., 20:13 (2023)
-
Cezary Gonera, Joanna Gonera, Javier de Lucas, Wioletta Szczesek, Bartosz M. Zawora, “More on Superintegrable Models
on Spaces of Constant Curvature”, Regul. Chaotic Dyn., 27:5 (2022), 561–571
-
Nataliya A. Balabanova, James A. Montaldi, “Two-body Problem on a Sphere
in the Presence of a Uniform Magnetic Field”, Regul. Chaotic Dyn., 26:4 (2021), 370–391
-
Gonera C. Gonera J., “New Superintegrable Models on Spaces of Constant Curvature”, Ann. Phys., 413 (2020), 168052
-
Maciejewski A.J., Przybylska M., Yaremko Yu., “Dynamics of a Dipole in a Stationary Electromagnetic Field”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2229 (2019), 20190230
-
Latini D., “Universal Chain Structure of Quadratic Algebras For Superintegrable Systems With Coalgebra Symmetry”, J. Phys. A-Math. Theor., 52:12 (2019), 125202
-
Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580
-
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434
-
Valery V. Kozlov, “Remarks on Integrable Systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161
-
Richard Montgomery, “MICZ-Kepler: Dynamics on the Cone over $SO(n)$”, Regul. Chaotic Dyn., 18:6 (2013), 600–607