26 citations to https://www.mathnet.ru/eng/rcd600
  1. Atsushi Nobe, “Exact solutions to SIR epidemic models via integrable discretization”, Journal of Mathematical Physics, 65:7 (2024)  crossref
  2. Peter H. van der Kamp, G. R. W. Quispel, David I. McLaren, “Trees and Superintegrable Lotka–Volterra Families”, Math Phys Anal Geom, 27:4 (2024)  crossref
  3. Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel, “On a Quadratic Poisson Algebra and Integrable Lotka – Volterra Systems with Solutions in Terms of Lambert's $W$ Function”, Regul. Chaot. Dyn., 2024  crossref
  4. G R W Quispel, Benjamin K Tapley, D I McLaren, Peter H van der Kamp, “Linear Darboux polynomials for Lotka–Volterra systems, trees and superintegrable families”, J. Phys. A: Math. Theor., 56:31 (2023), 315201  crossref
  5. Wentong Du, Min Xiao, Jie Ding, Yi Yao, Zhengxin Wang, Xinsong Yang, “Fractional-order PD control at Hopf bifurcation in a delayed predator–prey system with trans-species infectious diseases”, Mathematics and Computers in Simulation, 205 (2023), 414  crossref
  6. C A Evripidou, P Kassotakis, P Vanhaecke, “Morphisms and automorphisms of skew-symmetric Lotka–Volterra systems*”, J. Phys. A: Math. Theor., 55:32 (2022), 325201  crossref
  7. Lazureanu C., “Integrable Deformations and Dynamical Properties of Systems With Constant Population”, Mathematics, 9:12 (2021), 1378  crossref  isi  scopus
  8. Lazureanu C., “On the Integrable Deformations of the Maximally Superintegrable Systems”, Symmetry-Basel, 13:6 (2021), 1000  crossref  isi  scopus
  9. Bountis T., Zhunussova Zh., Dosmagulova K., Kanellopoulos G., “Integrable and Non-Integrable Lotka-Volterra Systems”, Phys. Lett. A, 402 (2021), 127360  crossref  mathscinet  isi  scopus
  10. van der Kamp P.H., MClaren D.I., Quispel G.R.W., “Homogeneous Darboux Polynomials and Generalising Integrable Ode Systems”, J. Comput. Dynam., 8:1 (2021), 1–8  crossref  mathscinet  isi  scopus
1
2
3
Next