8 citations to https://www.mathnet.ru/eng/rcd300
  1. Andrew Eliseev, Vsevolod L. Chernyshev, “Upper bound on saturation time of metric graphs by intervals moving on them”, Journal of Mathematical Analysis and Applications, 531:2 (2024), 127873  crossref
  2. D. V. Pyatko, V. L. Chernyshev, “Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph”, Math. Notes, 113:4 (2023), 538–551  mathnet  crossref  crossref  mathscinet
  3. D. S. Minenkov, V. E. Nazaikinskii, T. W. Hilberdink, V. L. Chernyshev, “Restricted partions: the polynomial case”, Funct. Anal. Appl., 56:4 (2022), 299–309  mathnet  crossref  crossref
  4. V. L. Chernyshev, A. A. Tolchennikov, “A Metric Graph for Which the Number of Possible End Positions of a Random Walk Grows Minimally”, Russ. J. Math. Phys., 29:4 (2022), 426  crossref
  5. V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “The number of endpoints of a random walk on a semi-infinite metric path graph”, Theoret. and Math. Phys., 207:1 (2021), 487–493  mathnet  crossref  crossref  adsnasa  isi
  6. V. L. Chernyshev, A. A. Tolchennikov, “Asymptotics of the number of endpoints of a random walk on a certain class of directed metric graphs”, Russ. J. Math. Phys., 28:4 (2021), 434–438  crossref  mathscinet  isi  scopus
  7. A. A. Izmaylov, L. W. Dworzanski, “Automated analysis of DP-systems using timed-arc Petri nets via TAPAAL tool”, Trudy ISP RAN, 32:6 (2020), 155–166  mathnet  crossref
  8. Vsevolod Chernyshev, Anton Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, Electronic Notes in Discrete Mathematics, 70 (2018), 31  crossref