111 citations to https://www.mathnet.ru/eng/rcd114
  1. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
  2. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
  3. Luis C. García-Naranjo, “Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88  mathnet  crossref
  4. Garcia-Naranjo L.C., “Generalisation of Chaplygin'S Reducing Multiplier Theorem With An Application to Multi-Dimensional Nonholonomic Dynamics”, J. Phys. A-Math. Theor., 52:20 (2019), 205203  crossref  mathscinet  isi  scopus
  5. Gajic B. Jovanovic B., “Nonholonomic Connections, Time Reparametrizations, and Integrability of the Rolling Ball Over a Sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
  6. Borisov A.V. Kilin A.A. Pivovarova E.N., “Speedup of the Chaplygin TOP By Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124  mathnet  crossref  isi  scopus
  7. B. Jovanovic, “Rolling balls over spheres in $\mathbb{R}^n$”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  zmath  isi  scopus
  8. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Nonholonomic Model of the Paul Trap”, Regul. Chaotic Dyn., 23:3 (2018), 339–354  mathnet  crossref  mathscinet  adsnasa
  9. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref
  10. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
Previous
1
2
3
4
5
6
7
12
Next