25 citations to https://www.mathnet.ru/eng/physd1
  1. V. Schastnyy, D. Treschev, “On Local Integrability in Billiard Dynamics”, Exp. Math., 28:3 (2019), 362–368  mathnet  crossref  isi  scopus
  2. Guan Huang, Vadim Kaloshin, Alfonso Sorrentino, “Nearly Circular Domains Which Are Integrable Close to the Boundary Are Ellipses”, Geom. Funct. Anal., 28:2 (2018), 334  crossref
  3. Vadim Kaloshin, Alfonso Sorrentino, “On the integrability of Birkhoff billiards”, Phil. Trans. R. Soc. A., 376:2131 (2018), 20170419  crossref
  4. Misha Bialy, Andrey E. Mironov, “A survey on polynomial in momenta integrals for billiard problems”, Phil. Trans. R. Soc. A., 376:2131 (2018), 20170418  crossref
  5. A. Glutsyuk, E. Shustin, “On polynomially integrable planar outer billiards and curves with symmetry property”, Math. Ann., 372:3-4 (2018), 1481  crossref
  6. Vadim Kaloshin, Alfonso Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018)  crossref
  7. Alexander Plakhov, Serge Tabachnikov, Dmitry Treschev, “Billiard transformations of parallel flows: A periscope theorem”, J. Geom. Phys., 115:5 (2017), 157–166  mathnet  crossref  isi  scopus
  8. Dmitry Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst. Ser. A, 37:10 (2017), 5271–5284  mathnet  crossref  isi  scopus
  9. V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290  mathnet  mathnet  crossref  crossref  isi  scopus
  10. Artur Avila, Jacopo De Simoi, Vadim Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. Math., 184:2 (2016), 527  crossref
Previous
1
2
3
Next