12 citations to https://www.mathnet.ru/eng/nonli12
  1. F Coppini, P M Santini, “Modulation instability, periodic anomalous wave recurrence, and blow up in the Ablowitz–Ladik lattices”, J. Phys. A: Math. Theor., 57:1 (2024), 015202  crossref
  2. F Coppini, P M Santini, “The effect of loss/gain and Hamiltonian perturbations of the Ablowitz—Ladik lattice on the recurrence of periodic anomalous waves”, J. Phys. A: Math. Theor., 57:7 (2024), 075701  crossref
  3. P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110  mathnet  mathnet  crossref  crossref
  4. A. V. Slunyaev, D. E. Pelinovsky, E. N. Pelinovsky, “Rogue waves in the sea: observations, physics, and mathematics”, Phys. Usp., 66:2 (2023), 148–172  mathnet  mathnet  crossref  crossref  isi  scopus
  5. Da-jun Zhang, Shi-min Liu, Xiao Deng, “The solutions of classical and nonlocal nonlinear Schrödinger equations with nonzero backgrounds: Bilinearisation and reduction approach”, Open Communications in Nonlinear Mathematical Physics, Volume 3 (2023)  crossref
  6. H. M. Yin, Q. Pan, K. W. Chow, “Doubly periodic solutions and breathers of the Hirota equation: recurrence, cascading mechanism and spectral analysis”, Nonlinear Dyn, 110:4 (2022), 3751  crossref
  7. Jingli Wang, Jingsong He, “The distortion of the Peregrine soliton under the perturbation in initial condition”, Physics Letters A, 452 (2022), 128432  crossref
  8. F. Coppini, P. G. Grinevich, P. M. Santini, Encyclopedia of Complexity and Systems Science, 2022, 1  crossref
  9. C.M. Schober, A. Islas, “Nonlinear damped spatially periodic breathers and the emergence of soliton-like rogue waves”, Physica D: Nonlinear Phenomena, 438 (2022), 133356  crossref
  10. F. Coppini, P. G. Grinevich, P. M. Santini, Encyclopedia of Complexity and Systems Science Series, Perturbation Theory, 2022, 565  crossref
1
2
Next