13 citations to https://www.mathnet.ru/eng/mmj88
  1. G. B. Sizykh, “Techenie puazeilevskogo tipa v kanale s pronitsaemymi stenkami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:1 (2022), 190–201  mathnet  crossref  elib
  2. L. M. Lin, Y. X. Wu, “Physical origin of vortex stretching and twisting: Viscous or inertial forces”, Physics of Fluids, 34:9 (2022)  crossref
  3. Subin P. Joseph, “Different families of new exact solutions for planar and nonplanar second grade fluid flows”, Chinese Journal of Physics, 77 (2022), 1225  crossref
  4. Dominik Dierkes, Alexei Cheviakov, Martin Oberlack, “New similarity reductions and exact solutions for helically symmetric viscous flows”, Physics of Fluids, 32:5 (2020)  crossref
  5. Ershkov S.V., “Non-Stationary Creeping Flows For Incompressible 3D Navier–Stokes Equations”, Eur. J. Mech. B-Fluids, 61:1 (2017), 154–159  crossref  mathscinet  isi
  6. Yu. V. Sheretov, “Ob obschikh tochnykh resheniyakh sistemy Nave-Stoksa i kvazigidrodinamicheskoi sistemy dlya nestatsionarnykh techenii”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2017, no. 3, 13–25  mathnet  crossref
  7. Fre P., Grassi P.A., Ravera L., Trigiante M., “Minimal D=7 Supergravity and the Supersymmetry of Arnold-Beltrarni Flux Branes”, J. High Energy Phys., 2016, no. 6, 018  crossref  mathscinet  isi
  8. Fre P., “Supersymmetric M2-Branes With Englert Fluxes, and the Simple Group Psl(2,7)”, Fortschritte Phys.-Prog. Phys., 64:6-7 (2016), 425–462  crossref  mathscinet  zmath  isi
  9. Fre P., Sorin A.S., “Classification of Arnold-Beltrami Flows and Their Hidden Symmetries”, Phys. Part. Nuclei, 46:4 (2015), 497–632  crossref  isi  elib
  10. R. S. Saks, “Cauchy problem for the Navier–Stokes equations, Fourier method”, Ufa Math. J., 3:1 (2011), 51–77  mathnet  zmath
1
2
Next