46 citations to https://www.mathnet.ru/eng/mmj70
  1. Dzhamay A., “Factorizations of rational matrix functions with application to discrete isomonodromic transformations and difference Painlevé equations”, J. Phys. A, 42:45 (2009), 454008, 10 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
  2. Heu V., “Stability of rank 2 vector bundles along isomonodromic deformations”, Math. Ann., 344:2 (2009), 463–490  crossref  mathscinet  zmath  isi
  3. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  4. O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  5. Hurtubise J., “On the geometry of isomonodromic deformations”, J. Geom. Phys., 58:10 (2008), 1394–1406  crossref  mathscinet  zmath  adsnasa  isi
  6. Kokotov A., Korotkin D., “A new hierarchy of integrable systems associated to Hurwitz spaces”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 1055–1088  crossref  mathscinet  zmath  adsnasa  isi
  7. Schlichenmaier M., “Classification of central extensions of Lax operator algebras”, Geometric Methods in Physics, AIP Conference Proceedings, 1079, 2008, 227–234  crossref  mathscinet  zmath  adsnasa  isi
  8. I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  9. Mazzocco M., Mo Man Yue, “The Hamiltonian structure of the second Painlevé hierarchy”, Nonlinearity, 20:12 (2007), 2845–2882  crossref  mathscinet  zmath  adsnasa  isi  elib
  10. Boalch Ph., “Quasi-Hamiltonian geometry of meromorphic connections”, Duke Math. J., 139:2 (2007), 369–405  crossref  mathscinet  zmath  isi
Previous
1
2
3
4
5
Next