10 citations to https://www.mathnet.ru/eng/mmj417
  1. Ján Mináč, Andrew Schultz, John Swallow, “Galois module structure of the units modulo $p^m$ of cyclic extensions of degree $p^n$”, manuscripta math., 171:1-2 (2023), 295  crossref
  2. Bogomolov F.A., Rovinsky M., Tschinkel Yu., “Homomorphisms of Multiplicative Groups of Fields Preserving Algebraic Dependence”, Eur. J. Math., 5:3, SI (2019), 656–685  crossref  mathscinet  zmath  isi  scopus
  3. Topaz A., “Abelian-By-Central Galois Groups of Fields i: a Formal Description”, Trans. Am. Math. Soc., 369:4 (2017), 2721–2745  crossref  mathscinet  zmath  isi  scopus
  4. Minac J., Nguyen Duy Tan, “Construction of Unipotent Galois Extensions and Massey Products”, Adv. Math., 304 (2017), 1021–1054  crossref  mathscinet  zmath  isi  scopus
  5. Ján Mináč, Nguyễn Duy Tân, “Construction of unipotent Galois extensions and Massey products”, Advances in Mathematics, 304 (2017), 1021  crossref
  6. A. Topaz, “Reconstructing function fields from rational quotients of mod-$\ell$ Galois groups”, Math. Ann., 366:1-2 (2016), 337–385  crossref  mathscinet  zmath  isi  scopus
  7. Adam Topaz, “Abelian-by-central Galois groups of fields II: Definability of inertia/decomposition groups”, Isr. J. Math., 215:2 (2016), 713  crossref
  8. Fop F., Topaz A., “on the Minimized Decomposition Theory of Valuations”, Bull. Math. Soc. Sci. Math. Roum., 58:3 (2015), 331–357  mathscinet  isi
  9. Minac J., Swallow J., Topaz A., “Galois Module Structure of (l(N))Th Classes of Fields”, Bull. London Math. Soc., 46:1 (2014), 143–154  crossref  mathscinet  zmath  isi  elib  scopus
  10. Bogomolov F., Tschinkel Yu., “Galois Theory and Projective Geometry”, Commun. Pure Appl. Math., 66:9 (2013), 1335–1359  crossref  mathscinet  zmath  isi  elib  scopus