106 citations to https://www.mathnet.ru/eng/mmj151
  1. Liu S.-Q., Zhang Y., Zhou X., “Central Invariants of the Constrained KP Hierarchies”, J. Geom. Phys., 97 (2015), 177–189  crossref  mathscinet  zmath  isi  elib  scopus
  2. Li Ch., “Sato Theory on the Q-Toda Hierarchy and Its Extension”, Chaos Solitons Fractals, 76 (2015), 10–23  crossref  mathscinet  zmath  isi  scopus
  3. Carlet G., Mertens L.Ph., “Principal Hierarchies of Infinite-Dimensional Frobenius Manifolds: the Extended 2D Toda Lattice”, Adv. Math., 278 (2015), 137–181  crossref  mathscinet  zmath  isi  scopus
  4. Buryak A., “Double Ramification Cycles and Integrable Hierarchies”, Commun. Math. Phys., 336:3 (2015), 1085–1107  crossref  mathscinet  zmath  isi  elib  scopus
  5. Takasaki K., “Orbifold Melting Crystal Models and Reductions of Toda Hierarchy”, J. Phys. A-Math. Theor., 48:21 (2015), 215201  crossref  mathscinet  zmath  isi  elib  scopus
  6. De Sole A., Kac V.G., Turhan R., “on Integrability of Some Bi-Hamiltonian Two Field Systems of Partial Differential Equations”, J. Math. Phys., 56:5 (2015), 051503  crossref  mathscinet  zmath  isi  scopus
  7. Marshall I., “Poisson Reduction of the Space of Polygons”, Int. Math. Res. Notices, 2015, no. 18, 8925–8958  crossref  mathscinet  zmath  isi  elib  scopus
  8. Li Ch., He J., “on the Extended Multi-Component Toda Hierarchy”, Math. Phys. Anal. Geom., 17:3-4 (2014), 377–407  crossref  mathscinet  zmath  isi  scopus
  9. Wu Ch.-Zh., Zuo D., “Infinite-Dimensional Frobenius Manifolds Underlying the Toda Lattice Hierarchy”, Adv. Math., 255 (2014), 487–524  crossref  mathscinet  zmath  isi  scopus
  10. Meng A., Li Ch., Huang Sh., “Integrability on Generalized Q-Toda Equation and Hierarchy”, J. Nonlinear Math. Phys., 21:3 (2014), 429–441  crossref  mathscinet  isi  scopus
Previous
1
4
5
6
7
8
9
10
11
Next