30 citations to https://www.mathnet.ru/eng/mmj10
-
A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Shchurov, “On the Adjacency Quantization in an Equation Modeling the Josephson Effect”, Funct. Anal. Appl., 48:4 (2014), 272–285
-
V. M. Buchstaber, S. I. Tertychnyi, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, Theoret. and Math. Phys., 176:2 (2013), 965–986
-
Schurov I., “Duck Farming on the Two-Torus: Multiple Canard Cycles in Generic Slow-Fast Systems”, Discret. Contin. Dyn. Syst., 2011, no. S, SI, 1289–1298
-
P. I. Kaleda, “Singular systems on the plane and in space”, J. Math. Sci. (N. Y.), 179:4 (2011), 475–490
-
V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “Rotation number quantization effect”, Theoret. and Math. Phys., 162:2 (2010), 211–221
-
Schurov I.V., “Ducks on the torus: existence and uniqueness”, J Dynam Control Systems, 16:2 (2010), 267–300
-
Ilyashenko Y., “Selected topics in differential equations with real and complex time”, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, NATO Science Series, Series II: Mathematics, Physics and Chemistry, 137, 2004, 317–354
-
Suckley R., Biktashev V.N., “The asymptotic structure of the Hodgkin-Huxley equations”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:12 (2003), 3805–3825
-
Klaus R. Schneider, Ekaterina V. Shchetinina, “One‐parametric families of canard cycles: two explicitly solvable examples”, Proc Appl Math and Mech, 2:1 (2003), 74
-
Moehlis J., “Canards in a surface oxidation reaction”, J. Nonlinear Sci., 12:4 (2002), 319–345