52 citations to https://www.mathnet.ru/eng/jotp2
  1. Ion Grama, Quansheng Liu, Eric Miqueu, “Asymptotics of the distribution and harmonic moments for a supercritical branching process in a random environment”, Ann. Inst. H. Poincaré Probab. Statist., 59:4 (2023)  crossref
  2. V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Theory Probab. Appl., 68:3 (2023), 411–430  mathnet  mathnet  crossref  crossref  scopus
  3. Wei Xu, “Asymptotics for exponential functionals of random walks”, Stochastic Processes and their Applications, 165 (2023), 1  crossref
  4. V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Proc. Steklov Inst. Math., 316 (2022), 336–355  mathnet  mathnet  crossref  crossref  scopus
  5. V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in an unfavorable random environment”, Diskr. Mat., 34:3 (2022), 20–33  mathnet  mathnet  crossref
  6. V. I. Afanasyev, “Weakly supercritical branching process in unfavourable environment”, Discrete Math. Appl., 34:1 (2024), 1–13  mathnet  mathnet  crossref  crossref  isi
  7. Rongjuan Fang, Zenghu Li, Jiawei Liu, “A Scaling Limit Theorem for Galton–Watson Processes in Varying Environments”, Proc. Steklov Inst. Math., 316 (2022), 137–159  mathnet  mathnet  crossref  crossref  scopus
  8. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063  mathnet  mathnet  crossref  crossref  isi  scopus
  9. Charline Smadi, Vladimir Vatutin, “Critical branching processes in random environment with immigration: survival of a single family”, Extremes, 24 (2021), 433–460  mathnet  crossref  isi  scopus
  10. Yanqing Wang, Quansheng Liu, “Asymptotic Properties of a Supercritical Branching Process with Immigration in a Random Environment”, Stochastics and Quality Control, 36:2 (2021), 145  crossref
Previous
1
2
3
4
5
6
Next