49 citations to https://www.mathnet.ru/eng/jotp2
  1. V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Proc. Steklov Inst. Math., 316 (2022), 336–355  mathnet  mathnet  crossref  crossref  scopus
  2. V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in an unfavorable random environment”, Diskr. Mat., 34:3 (2022), 20–33  mathnet  mathnet  crossref
  3. V. I. Afanasyev, “Weakly supercritical branching process in unfavourable environment”, Discrete Math. Appl., 34:1 (2024), 1–13  mathnet  mathnet  crossref  crossref  isi
  4. Rongjuan Fang, Zenghu Li, Jiawei Liu, “A Scaling Limit Theorem for Galton–Watson Processes in Varying Environments”, Proc. Steklov Inst. Math., 316 (2022), 137–159  mathnet  mathnet  crossref  crossref  scopus
  5. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063  mathnet  mathnet  crossref  crossref  isi  scopus
  6. Charline Smadi, Vladimir Vatutin, “Critical branching processes in random environment with immigration: survival of a single family”, Extremes, 24 (2021), 433–460  mathnet  crossref  isi  scopus
  7. Yanqing Wang, Quansheng Liu, “Asymptotic Properties of a Supercritical Branching Process with Immigration in a Random Environment”, Stochastics and Quality Control, 36:2 (2021), 145  crossref
  8. Emile Le Page, Marc Peigné, Da Cam Pham, “Central limit theorem for a critical multitype branching process in random environments”, Tunisian J. Math., 3:4 (2021), 801  crossref
  9. H. Leman, J. C. Pardo, “Extinction and coming down from infinity of continuous-state branching processes with competition in a Lévy environment”, J. Appl. Probab., 58:1 (2021), 128  crossref
  10. Zhi-Qiang Gao, “Exact convergence rate in the central limit theorem for a branching process in a random environment”, Statistics & Probability Letters, 178 (2021), 109194  crossref
Previous
1
2
3
4
5
Next