11 citations to https://www.mathnet.ru/eng/jis1
-
Kang Lu, “On Bethe eigenvectors and higher transfer matrices for supersymmetric spin chains”, J. High Energ. Phys., 2023:4 (2023)
-
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104–31
-
Allan Gerrard, Vidas Regelskis, “Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains”, Nuclear Physics B, 952 (2020), 114909
-
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “Separation of variables bases for integrable $gl_{\mathcal{M}|\mathcal{N}}$ and Hubbard models”, SciPost Phys., 9:4 (2020)
-
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9:6 (2020)
-
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6–30
-
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
-
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278
-
N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778
-
Nikolay Gromov, Fedor Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energ. Phys., 2018:9 (2018)