15 citations to https://www.mathnet.ru/eng/jath3
  1. F. Dai, V. Temlyakov, “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570–28  mathnet  crossref  isi
  2. Anatolii S. Romanyuk, Serhii Ya. Yanchenko, “Estimates for the entropy numbers of the Nikol'skii–Besov classes of functions with mixed smoothness in the space of quasi‐continuous functions”, Mathematische Nachrichten, 296:6 (2023), 2575  crossref
  3. F. Dai, V. N. Temlyakov, “Universal Sampling Discretization”, Constr. Approx., 58 (2023), 589–613  mathnet  crossref
  4. A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorov Widths of the Nikol'skii–Besov Classes of Periodic Functions of Many Variables in the Space of Quasicontinuous Functions”, Ukr Math J, 74:2 (2022), 251  crossref
  5. A. S. Romanyuk, S. Ya. Yanchenko, “Kolmogorovskі poperechniki klasіv Nіkolskogo – Bєsova perіodichnikh funktsіi bagatokh zmіnnikh u prostorі kvazіneperervnikh funktsіi”, Ukr. Mat. Zhurn., 74:2 (2022), 220  crossref
  6. F. Dai, A. Prymak, A. Shadrin, V. Temlyakov, S. Tikhonov, “Entropy numbers and Marcinkiewicz-type discretization”, J. Funct. Anal., 281:6 (2021), 109090–25  mathnet  crossref  isi  scopus
  7. Egor D. Kosov, “Marcinkiewicz-type discretization of L-norms under the Nikolskii-type inequality assumption”, Journal of Mathematical Analysis and Applications, 504:1 (2021), 125358  crossref
  8. K. V. Pozhars'ka, “Estimates for the Entropy Numbers of the Classes
    B
    p , θ
    Ω
    $ {B}_{p,\theta}^{\varOmega } $ of Periodic Multivariable Functions in the Uniform Metric”, Ukr Math J, 70:9 (2019), 1439  crossref
  9. A. S. Romanyuk, “Entropy Numbers and Widths for the Nikol'skii–Besov Classes of Functions of Many Variables in the Space L∞”, Anal Math, 45:1 (2019), 133  crossref
  10. Kateryna V. Pozharska, “Entropy Numbers of the Nikol'skii—Besov-type Classes of Periodic Functions of many Variables”, J Math Sci, 241:1 (2019), 64  crossref
1
2
Next