14 citations to https://www.mathnet.ru/eng/jath1
  1. V I Olevskyi, Yu B Olevska, O V Olevskyi, V V Hnatushenko, “Raster image processing using 2D Padé-type approximations”, J. Phys.: Conf. Ser., 2675:1 (2023), 012015  crossref
  2. V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Math., 85:3 (2021), 351–366  mathnet  mathnet  crossref  crossref  isi  scopus
  3. Yu. B. Olevska, V. I. Olevskyi, I. V. Shapka, T. S. Naumenko, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'19, 2164, APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'19, 2019, 060014  crossref
  4. I. V. Andrianov, V. I. Olevskyi, I. V. Shapka, T. S. Naumenko, AIP Conference Proceedings, 2025, 2018, 040002  crossref
  5. V. I. Buslaev, “On Singular points of Meromorphic Functions Determined by Continued Fractions”, Math. Notes, 103:4 (2018), 527–536  mathnet  mathnet  crossref  crossref  isi  scopus
  6. S. P. Suetin, “On a new approach to the problem of distribution of zeros of Hermite–Padé polynomials for a Nikishin system”, Proc. Steklov Inst. Math., 301 (2018), 245–261  mathnet  mathnet  crossref  crossref  isi  scopus
  7. V. I. Buslaev, “Continued fractions with limit periodic coefficients”, Sb. Math., 209:2 (2018), 187–205  mathnet  mathnet  crossref  crossref  isi  scopus
  8. V. I. Buslaev, “On the Van Vleck Theorem for Limit-Periodic Continued Fractions of General Form”, Proc. Steklov Inst. Math., 298 (2017), 68–93  mathnet  mathnet  crossref  crossref  isi  scopus
  9. E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  10. V. I. Buslaev, “The Capacity of the Rational Preimage of a Compact Set”, Math. Notes, 100:6 (2016), 781–790  mathnet  mathnet  crossref  crossref  isi  scopus
1
2
Next