16 citations to https://www.mathnet.ru/eng/itsf1
  1. B. Ananthanarayan, Souvik Bera, S. Friot, Tanay Pathak, “Olsson.wl & ROC2.wl: Mathematica packages for transformations of multivariable hypergeometric functions & regions of convergence for their series representations in the two variables case”, Computer Physics Communications, 300 (2024), 109162  crossref
  2. Souvik Bera, Tanay Pathak, “Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their application to Feynman integrals”, Computer Physics Communications, 2024, 109386  crossref
  3. S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function F D (N)”, Integral Transforms and Special Functions, 34:11 (2023), 813  crossref
  4. Souvik Bera, “ϵ-expansion of multivariable hypergeometric functions appearing in Feynman integral calculus”, Nuclear Physics B, 989 (2023), 116145  crossref
  5. S. I. Bezrodnykh, “Formulas for computing the Lauricella function in the case of crowding of variables”, Comput. Math. Math. Phys., 62:12 (2022), 2069–2090  mathnet  mathnet  crossref  crossref
  6. S. I. Bezrodnykh, “Analytic continuation of Lauricella's function FD(N) for variables close to unit near hyperplanes {zj = zl}”, Integral Transforms and Special Functions, 33:5 (2022), 419  crossref
  7. S. I. Bezrodnykh, “Analytic continuation of the Kampé de Fériet function and the general double Horn series”, Integral Transforms and Special Functions, 33:11 (2022), 908  crossref
  8. I. Shilin, J. Choi, “Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function $F_1$”, Comput. Math. Math. Phys., 62:9 (2022), 1486–1495  mathnet  mathnet  crossref  crossref
  9. S. I. Bezrodnykh, “Analytic continuation of Lauricella's function FD(N) for large in modulo variables near hyperplanes {zj = zl}”, Integral Transforms and Special Functions, 33:4 (2022), 276  crossref
  10. S. I. Bezrodnykh, “Formulas for analytic continuation of Horn functions of two variables”, Comput. Math. Math. Phys., 62:6 (2022), 884–903  mathnet  mathnet  crossref  crossref
1
2
Next