16 citations to https://www.mathnet.ru/eng/itsf1
-
B. Ananthanarayan, Souvik Bera, S. Friot, Tanay Pathak, “Olsson.wl & ROC2.wl: Mathematica packages for transformations of multivariable hypergeometric functions & regions of convergence for their series representations in the two variables case”, Computer Physics Communications, 300 (2024), 109162
-
Souvik Bera, Tanay Pathak, “Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their application to Feynman integrals”, Computer Physics Communications, 2024, 109386
-
S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function F
D
(N)”, Integral Transforms and Special Functions, 34:11 (2023), 813
-
Souvik Bera, “ϵ-expansion of multivariable hypergeometric functions appearing in Feynman integral calculus”, Nuclear Physics B, 989 (2023), 116145
-
S. I. Bezrodnykh, “Formulas for computing the Lauricella function in the case of crowding of variables”, Comput. Math. Math. Phys., 62:12 (2022), 2069–2090
-
S. I. Bezrodnykh, “Analytic continuation of Lauricella's function FD(N) for variables close to unit near hyperplanes {zj = zl}”, Integral Transforms and Special Functions, 33:5 (2022), 419
-
S. I. Bezrodnykh, “Analytic continuation of the Kampé de Fériet function and the general double Horn series”, Integral Transforms and Special Functions, 33:11 (2022), 908
-
I. Shilin, J. Choi, “Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function $F_1$”, Comput. Math. Math. Phys., 62:9 (2022), 1486–1495
-
S. I. Bezrodnykh, “Analytic continuation of Lauricella's function FD(N) for large in modulo variables near hyperplanes {zj = zl}”, Integral Transforms and Special Functions, 33:4 (2022), 276
-
S. I. Bezrodnykh, “Formulas for analytic continuation of Horn functions of two variables”, Comput. Math. Math. Phys., 62:6 (2022), 884–903