47 citations to https://www.mathnet.ru/eng/faa307
  1. Wu L., He G., Geng X., “Algebro-Geometric Solutions to the Modified Sawada-Kotera Hierarchy”, J. Math. Phys., 53:12 (2012), 123513  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  2. England M. Athorne Ch., “Generalised Elliptic Functions”, Cent. Eur. J. Math., 10:5 (2012), 1655–1672  crossref  mathscinet  zmath  isi  elib  scopus
  3. Vershilov A.V., Tsiganov A.V., “On One Integrable System with a Cubic First Integral”, Lett. Math. Phys., 101:2 (2012), 143–156  crossref  mathscinet  zmath  adsnasa  isi  scopus
  4. J. Harnad, V. Z. Enolski, “Schur function expansions of KP $\tau$-functions associated to algebraic curves”, Russian Math. Surveys, 66:4 (2011), 767–807  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  5. England M., “Deriving Bases for Abelian Functions”, Comput. Methods Funct. Theory, 11:2 (2011), 617–654  crossref  mathscinet  zmath  isi  elib
  6. Eilbeck J.C. England M. Onishi Y., “Abelian Functions Associated with Genus Three Algebraic Curves”, LMS J. Comput. Math., 14 (2011), 291–326  crossref  mathscinet  zmath  isi
  7. Feng, Y, “Hyperelliptic functions solutions of some nonlinear partial differential equations using the direct method”, Applied Mathematics and Computation, 215:11 (2010), 3868  crossref  mathscinet  zmath  isi  scopus
  8. Matthew England, “Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves”, SIGMA, 6 (2010), 025, 22 pp.  mathnet  crossref  mathscinet
  9. Feng Y.ang, Ding Q.i, Dong Y.an-Cheng, Zhang H.ong-Qing, “Hyperelliptic Function Solutions of Three Genus for KP Equation Using Direct Method”, Communications in Theoretical Physics, 53:4 (2010), 615–618  crossref  mathscinet  zmath  adsnasa  isi  scopus
  10. Yu. V. Brezhnev, “Transcendental trace formulas for finite-gap potentials”, Theoret. and Math. Phys., 164:1 (2010), 920–928  mathnet  crossref  crossref  adsnasa  isi  elib
Previous
1
2
3
4
5
Next