26 citations to https://www.mathnet.ru/eng/faa104
  1. Julia Bernatska, “Abelian Function Fields on Jacobian Varieties”, Axioms, 14:2 (2025), 90  crossref
  2. J. Chris Eilbeck, John Gibbons, Yoshihiro Ônishi, Seidai Yasuda, “Theory of heat equations for sigma functions”, Glasgow Math. J., 2025, 1  crossref
  3. Shigeki Matsutani, “Statistical mechanics of elastica for the shape of supercoiled DNA: Hyperelliptic elastica of genus three”, Physica A: Statistical Mechanics and its Applications, 643 (2024), 129799  crossref
  4. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
  5. V. M. Buchstaber, “The Mumford dynamical system and hyperelliptic Kleinian functions”, Funct. Anal. Appl., 57:4 (2023), 288–302  mathnet  crossref  crossref  mathscinet  isi
  6. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
  7. Julia Bernatska, Dmitry Leykin, “Solution of the Jacobi inversion problem on non-hyperelliptic curves”, Lett Math Phys, 113:5 (2023)  crossref
  8. Takanori Ayano, Victor M. Buchstaber, “Relationships Between Hyperelliptic Functions of Genus $2$ and Elliptic Functions”, SIGMA, 18 (2022), 010, 30 pp.  mathnet  crossref  mathscinet
  9. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
  10. A. V. Domrin, “Uniqueness theorem for the two-dimensional sigma function”, Funct. Anal. Appl., 54:1 (2020), 21–30  mathnet  crossref  crossref  mathscinet  isi  elib
1
2
3
Next