10 citations to https://www.mathnet.ru/eng/epjp1
-
Vladimir A. Shargatov, Anna P. Chugainova, Georgy V. Kolomiytsev, Irik I. Nasyrov, Anastasia M. Tomasheva, Sergey V. Gorkunov, Polina I. Kozhurina, “Why Stable Finite-Difference Schemes Can Converge to Different Solutions: Analysis for the Generalized Hopf Equation”, Computation, 12:4 (2024), 76
-
A. P. Chugainova, A. G. Kulikovskii, “Structures of longitudinal-torsional shock waves and special discontinuities in nonlinearly viscoelastic media with dispersion”, Contin. Mech. Thermodyn., 35 (2023), 1655–1669
-
V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva, “Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points”, Proc. Steklov Inst. Math., 322 (2023), 257–272
-
A. G. Kulikovskii, A. P. Chugainova, “Structures of non-classical discontinuities in solutions of hyperbolic systems of equations”, Russian Math. Surveys, 77:1 (2022), 47–79
-
A. P. Chugainova, “Special discontinuities in nonlinear elastic rods”, AIP Conf. Proc., 2522 (2022), 60004–5
-
V. A. Shargatov, A. P. Chugainova, G. V. Kolomiytsev, “Global stability of traveling wave solutions of generalized Korteveg–de Vries–Burgers equation with non-constant dissipation parameter”, J. Comput. Appl. Math., 412 (2022), 114354–18
-
A. P. Chugainova, G. V. Kolomoitsev, V. A. Shargatov, “On the Instability of Monotone Traveling-Wave Solutions for a Generalized Korteweg-–de Vries-–Burgers Equation”, Russ. J. Math. Phys., 29 (2022), 342–357
-
V. A. Shargatov, A. P. Chugainova, “Stability analysis of traveling wave solutions of a generalized Korteweg–de Vries–Burgers equation with variable dissipation parameter”, J. Comput. Appl. Math., 397 (2021), 113654–17
-
Alexey Samokhin, “On Monotonic Pattern in Periodic Boundary Solutions of Cylindrical and Spherical Kortweg–De Vries–Burgers Equations”, Symmetry, 13:2 (2021), 220
-
V. S. Gerdjikov, B. Prinari, V. V. Pukhnachev, M. D. Todorov, “EDITORIAL: “Solitons, Integrability, Nonlinear Waves: Theory and Applications””, Eur. Phys. J. Plus, 136:1 (2021)