59 citations to https://www.mathnet.ru/eng/emj94
  1. V. V. Kisil, “The real and complex techniques in harmonic analysis from the point of view of covariant transform”, Eurasian Math. J., 5:1 (2014), 95–121  mathnet
  2. Burenkov V.I., Goldman M.L., “Necessary and Sufficient Conditions For the Boundedness of the Maximal Operator From Lebesgue Spaces To Morrey-Type Spaces”, Math. Inequal. Appl., 17:2 (2014), 401–418  crossref  mathscinet  zmath  isi  elib  scopus
  3. A. Akbulut, V. S. Guliev, Sh. A. Muradova, “On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 7–20  mathnet  mathscinet  zmath
  4. V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45  mathnet  mathscinet  zmath
  5. V. I. Burenkov, D. K. Darbayeva, E. D. Nursultanov, “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 46–53  mathnet  mathscinet  zmath
  6. A. Gogatishvili, R. Ch. Mustafayev, “New characterization of Morrey spaces”, Eurasian Math. J., 4:1 (2013), 54–64  mathnet  mathscinet  zmath
  7. W. Sickel, “Smoothness spaces related to Morrey spaces — a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124  mathnet  mathscinet  zmath
  8. T. V. Tararykova, “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134  mathnet  mathscinet  zmath
  9. Sawano Y., Shimomura T., “Sobolev Embeddings For Generalized Riesz Potentials of Functions in Morrey Spaces l-(1,l-Phi)(G) Over Nondoubling Measure Spaces”, J. Funct. Space Appl., 2013, 984259  crossref  mathscinet  zmath  isi  scopus
Previous
1
2
3
4
5
6