8 citations to https://www.mathnet.ru/eng/emj226
  1. M. A. Senouci, “Boundedness of the generalized Riemann–Liouville operator in local Morrey-type spaces”, Eurasian Math. J., 14:4 (2023), 63–68  mathnet  crossref  mathscinet
  2. M. A. Senouci, “Boundedness of Riemann–Liouville fractional integral operator in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 82–91  mathnet  crossref
  3. O. G. Avsyankin, “On integral operators with homogeneous kernels in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 92–96  mathnet  crossref
  4. V. I. Burenkov, D. K. Chigambayeva, E. D. Nursultanov, “Marcinkiewicz-type interpolation theorem for Morrey-type spaces and its corollaries”, Complex Var. Elliptic Equ., 65:1, SI (2020), 87–108  crossref  mathscinet  zmath  isi  scopus
  5. O. G. Avsyankin, “On invertibility of convolution type operators in Morrey spaces”, Russian Math. (Iz. VUZ), 63:6 (2019), 1–7  mathnet  crossref  crossref  isi
  6. O. G. Avsyankin, “Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces”, Math. Notes, 104:3 (2018), 331–338  mathnet  crossref  crossref  mathscinet  isi  elib
  7. N. Bokayev, V. Burenkov, D. Matin, “Sufficient conditions for the pre-compactness of sets in global Morrey-type spaces”, International Conference Functional Analysis in Interdisciplinary Applications FAIA 2017, AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 030001  crossref  isi
  8. N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115  mathnet  mathscinet