86 citations to https://www.mathnet.ru/eng/dan46101
-
O. I. Mokhov, “The classification of multidimensional Poisson brackets of hydrodynamic type”, Russian Math. Surveys, 61:2 (2006), 356–358
-
O. I. Mokhov, “Non-local Hamiltonian operators of hydrodynamic type with flat metrics, and the
associativity equations”, Russian Math. Surveys, 59:1 (2004), 191–192
-
M. V. Pavlov, “Classifying Integrable Egoroff Hydrodynamic Chains”, Theoret. and Math. Phys., 138:1 (2004), 45–58
-
O. I. Mokhov, “Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamé Equations”, Theoret. and Math. Phys., 138:2 (2004), 238–249
-
M. V. Pavlov, S. P. Tsarev, “Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type”, Funct. Anal. Appl., 37:1 (2003), 32–45
-
O. I. Mokhov, “The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies”, Funct. Anal. Appl., 37:2 (2003), 103–113
-
S. Yu. Dobrokhotov, E. S. Semenov, B. Tirozzi, “Hugoniót–Maslov Chains for Singular Vortical Solutions to Quasilinear Hyperbolic Systems and Typhoon Trajectory”, Journal of Mathematical Sciences, 124:5 (2004), 5209–5249
-
O. I. Mokhov, “Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature”, Theoret. and Math. Phys., 136:1 (2003), 908–916
-
O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russian Math. Surveys, 57:1 (2002), 153–154
-
O. I. Mokhov, “Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature”, Russian Math. Surveys, 57:5 (2002), 999–1001