24 citations to https://www.mathnet.ru/eng/dan44619
  1. A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  mathnet  crossref  mathscinet
  2. A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure”, J. Math. Sci. (N. Y.), 209:6 (2015), 953–978  mathnet  crossref
  3. P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci. (N. Y.), 215:6 (2016), 715–733  mathnet  crossref  mathscinet
  4. A. A. Lodkin, A. R. Minabutdinov, “Limiting curves for the Pascal adic transformation”, J. Math. Sci. (N. Y.), 216:1 (2016), 94–119  mathnet  crossref  mathscinet
  5. A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, J. Math. Sci. (N. Y.), 196:2 (2014), 192–198  mathnet  crossref  mathscinet
  6. A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$”, J. Math. Sci. (N. Y.), 190:3 (2013), 459–463  mathnet  crossref  mathscinet
  7. A. M. Vershik, “Scailing entropy and automorphisms with pure pointspectrum”, St. Petersburg Math. J., 23:1 (2012), 75–91  mathnet  crossref  mathscinet  zmath  isi  elib
  8. A. M. Vershik, “The Pascal automorphism has a continuous spectrum”, Funct. Anal. Appl., 45:3 (2011), 173–186  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  9. A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asymptotic behavior of the scaling entropy of the Pascal adic transformation”, J. Math. Sci. (N. Y.), 174:1 (2011), 28–35  mathnet  crossref
  10. A. M. Vershik, B. Solomyak, “The adic realization of the Morse transformation and the extension of its action to the solenoid”, J. Math. Sci. (N. Y.), 158:6 (2009), 809–818  mathnet  crossref  zmath  elib  elib
Previous
1
2
3
Next