11 citations to https://www.mathnet.ru/eng/dan42811
  1. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  2. O. I. Mokhov, “On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus”, Math. Notes, 94:2 (2013), 298–300  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  3. Dafeng Zuo, “Commuting differential operators of rank 3 associated to a curve of genus 2”, SIGMA, 8 (2012), 044, 11 pp.  mathnet  crossref  mathscinet
  4. D. P. Novikov, “Algebraic-geometric solutions of the Krichever–Novikov equation”, Theoret. and Math. Phys., 121:3 (1999), 1567–1573  mathnet  crossref  crossref  mathscinet  zmath  isi
  5. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  6. O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655  mathnet  crossref  mathscinet  zmath
  7. P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465  mathnet  crossref  mathscinet  zmath
  8. I. M. Krichever, “The laplace method, algebraic curves, and nonlinear equations”, Funct. Anal. Appl., 18:3 (1984), 210–223  mathnet  crossref  mathscinet  zmath  isi
  9. P. G. Grinevich, “Rational solutions for the equation of commutation of differential operators”, Funct. Anal. Appl., 16:1 (1982), 15–19  mathnet  crossref  mathscinet  zmath  isi
  10. O. I. Mokhov, “Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve”, Russian Math. Surveys, 37:4 (1982), 129–130  mathnet  crossref  mathscinet  zmath  adsnasa  isi
1
2
Next