16 citations to https://www.mathnet.ru/eng/dan40190
  1. N. P. Dolbilin, “Local Theory of Regular Systems and Delone Sets”, Proc. Steklov Inst. Math., 325 (2024), 120–135  mathnet  crossref  crossref
  2. M. I. Shtogrin, “On a convex polyhedron in a regular point system”, Izv. Math., 86:3 (2022), 586–619  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  3. N. P. Dolbilin, M. I. Shtogrin, “Delone Sets and Tilings: Local Approach”, Proc. Steklov Inst. Math., 318 (2022), 65–89  mathnet  crossref  crossref
  4. N. P. Dolbilin, M. I. Shtogrin, “Local groups in Delone sets: a conjecture and results”, Russian Math. Surveys, 76:6 (2021), 1137–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  5. N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Proc. Steklov Inst. Math., 302 (2018), 161–185  mathnet  crossref  crossref  mathscinet  isi  elib
  6. N. P. Dolbilin, “Delone sets in $\mathbb{R}^3$: regularity conditions”, J. Math. Sci., 248:6 (2020), 743–761  mathnet  crossref  mathscinet
  7. N. P. Dolbilin, A. N. Magazinov, “Uniqueness theorem for locally antipodal Delaunay sets”, Proc. Steklov Inst. Math., 294 (2016), 215–221  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  8. S. V. Krivovichev, “Local approach and the theory of lovozerite structures”, Proc. Steklov Inst. Math., 288 (2015), 105–116  mathnet  crossref  crossref  isi  elib
  9. Proc. Steklov Inst. Math., 288 (2015), 259–264  mathnet  crossref  crossref  isi  elib
  10. N. P. Dolbilin, A. N. Magazinov, “Locally antipodal Delaunay sets”, Russian Math. Surveys, 70:5 (2015), 958–960  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
1
2
Next