32 citations to https://www.mathnet.ru/eng/dan26607
-
A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russian Math. Surveys, 71:5 (2016), 907–964
-
N. E. Erzhanov, I. Orazov, “On one mathematical model of the extraction process of polydisperse porous material”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 9:2 (2016), 5–15
-
Cemile Nur, O. A. Veliev, “On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions”, Mosc. Math. J., 15:3 (2015), 511–526
-
A. M. Savchuk, I. V. Sadovnichaya, “The Riesz basis property with brackets for Dirac systems with summable potentials”, Journal of Mathematical Sciences, 233:4 (2018), 514–540
-
Trans. Moscow Math. Soc., 75 (2014), 151–172
-
N. S. Imanbaev, M. A. Sadybekov, “On spectral properties of a periodic problem with an integral perturbation of the boundary condition”, Eurasian Math. J., 4:3 (2013), 53–62
-
V. P. Kurdyumov, A. P. Khromov, “Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals”, Izv. Math., 76:6 (2012), 1175–1189
-
V. P. Kurdyumov, A. P. Khromov, “The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure”, Russian Math. (Iz. VUZ), 54:2 (2010), 33–45
-
A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator”, Proc. Steklov Inst. Math., 269 (2010), 284–298
-
O. A. Veliev, A. A. Shkalikov, “On the Riesz Basis Property of the Eigen- and Associated Functions of Periodic and Antiperiodic Sturm–Liouville Problems”, Math. Notes, 85:6 (2009), 647–660