78 citations to https://www.mathnet.ru/eng/cmph1
  1. Alexander S. Holevo, Sergey N. Filippov, “Quantum Gaussian maximizers and log-Sobolev inequalities”, Lett. Math. Phys., 113 (2023), 10–23  mathnet  crossref
  2. Xiao-yu Chen, Maoke Miao, Rui Yin, Jiantao Yuan, “Bosonic Gaussian channel and Gaussian witness entanglement criterion of continuous variables”, Phys. Rev. Research, 5:3 (2023)  crossref
  3. Huihui Li, Nan Li, Shunlong Luo, “Probing correlations in two-mode bosonic fields via Gaussian noise channels”, Phys. Rev. A, 107:6 (2023)  crossref
  4. Lars Dammeier, Reinhard F. Werner, “Quantum-Classical Hybrid Systems and their Quasifree Transformations”, Quantum, 7 (2023), 1068  crossref
  5. Yue Zhang, Shunlong Luo, “From the Wigner function to the $s$-ordered phase-space distribution via a Gaussian noise channel”, Theoret. and Math. Phys., 210:3 (2022), 425–441  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  6. A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  7. Zuhra Amiri, Boulat A. Bash, Janis Notzel, 2022 IEEE Globecom Workshops (GC Wkshps), 2022, 298  crossref
  8. Francesco Anna Mele, Ludovico Lami, Vittorio Giovannetti, “Restoring Quantum Communication Efficiency over High Loss Optical Fibers”, Phys. Rev. Lett., 129:18 (2022)  crossref
  9. Shi-Yuan Wang, Tuna Erdogan, Matthieu Bloch, 2022 IEEE International Symposium on Information Theory (ISIT), 2022, 318  crossref
  10. Francesco Anna Mele, Ludovico Lami, Vittorio Giovannetti, “Quantum optical communication in the presence of strong attenuation noise”, Phys. Rev. A, 106:4 (2022)  crossref
Previous
1
2
3
4
5
6
7
8
Next