11 citations to https://www.mathnet.ru/eng/art1
-
Kostyantyn Zheltukhin, Natalya Zheltukhina, “On Construction of Darboux integrable discrete models”, Reports on Mathematical Physics, 92:3 (2023), 279
-
K.K. Abdurasulov, B.A. Omirov, I.S. Rakhimov, G.O. Solijanova, “On completeness of some pro-solvable Lie algebras”, Filomat, 37:19 (2023), 6395
-
Luisa María Camacho, Rosa María Navarro, Bakhrom A. Omirov, “Residually solvable extensions of pro-nilpotent Leibniz superalgebras”, Journal of Geometry and Physics, 172 (2022), 104414
-
I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theoret. and Math. Phys., 213:2 (2022), 1589–1612
-
D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
-
I T Habibullin, M N Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A: Math. Theor., 54:50 (2021), 505201
-
I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices
via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581
-
I T Habibullin, M N Kuznetsova, A U Sakieva, “Integrability conditions for two-dimensional Toda-like equations”, J. Phys. A: Math. Theor., 53:39 (2020), 395203
-
E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, Journal of Mathematical Physics, 61:7 (2020)
-
M. N. Kuznetsova, “Classification of a subclass of quasilinear two-dimensional lattices by means of characteristic algebras”, Ufa Math. J., 11:3 (2019), 109–131