11 citations to https://www.mathnet.ru/eng/admat8
  1. Nikolay Abrosimov, Alexander Kolpakov, Alexander Mednykh, “Euclidean volumes of hyperbolic knots”, Proc. Amer. Math. Soc., 2023  crossref
  2. V. A. Krasnov, “Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature”, J Math Sci, 267:5 (2022), 554  crossref
  3. Victor Alexandrov, “The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in $\mathbb R^d$ does not always remain unaltered during the flex”, J. Geom., 111:2 (2020)  crossref
  4. Victor Alexandrov, “Necessary conditions for the extendibility of a first-order flex of a polyhedron to its flex”, Beitr Algebra Geom, 61:2 (2020), 355  crossref
  5. Victor Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019)  crossref
  6. Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145  mathnet  mathnet  crossref  crossref  isi  scopus
  7. V. A. Alexandrov, “The set of nondegenerate flexible polyhedra of a prescribed combinatorial structure is not always algebraic”, Siberian Math. J., 56:4 (2015), 569–574  mathnet  mathnet  crossref  crossref  isi  scopus
  8. A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80  mathnet  mathnet  crossref  crossref  isi  scopus
  9. A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609  mathnet  mathnet  crossref  crossref  isi  scopus
  10. A. A. Gaifullin, S. A. Gaifullin, “Deformations of period lattices of flexible polyhedral surfaces”, Discrete Comput. Geom., 51:3 (2014), 650–665  mathnet  crossref  isi  scopus
1
2
Next