19 citations to https://www.mathnet.ru/eng/adm155
  1. Grigorchuk R., Savchuk D., “Self-Similar Groups Acting Essentially Freely on the Boundary of the Binary Rooted Tree”, Group Theory, Combinatorics, and Computing, Contemporary Mathematics, 611, eds. Morse R., NikolovaPopova D., Witherspoon S., Amer Mathematical Soc, 2014, 9–48  crossref  mathscinet  zmath  isi
  2. Bondarenko I.V., Samoilovych I.O., “On Finite Generation of Self-Similar Groups of Finite Type”, Int. J. Algebr. Comput., 23:1 (2013), 69–79  crossref  mathscinet  zmath  isi  elib  scopus
  3. Mamaghani M.J., “An Automaton Group: a Computational Case Study”, Bull. Iran Math. Soc., 38:4 (2012), 907–924  mathscinet  zmath  isi
  4. Bondarenko I., Ceccherini-Silberstein T., Donno A., Nekrashevych V., “On a Family of Schreier Graphs of Intermediate Growth Associated with a Self-Similar Group”, Eur. J. Comb., 33:7, SI (2012), 1408–1421  crossref  mathscinet  zmath  isi  elib  scopus
  5. Akhavi A., Klimann I., Lombardy S., Mairesse J., Picantin M., “On the Finiteness Problem for Automaton (Semi) Groups”, Int. J. Algebr. Comput., 22:6 (2012), 1250052  crossref  mathscinet  zmath  isi  elib  scopus
  6. Makisumi Sh. Stadnyk G. Steinhurst B., “Modified Hanoi Towers Groups and Limit Spaces”, Int. J. Algebr. Comput., 21:6 (2011), 867–887  crossref  mathscinet  zmath  isi  scopus
  7. Savchuk D., Vorobets Ya., “Automata Generating Free Products of Groups of Order 2”, J. Algebra, 336:1 (2011), 53–66  crossref  mathscinet  zmath  isi  elib  scopus
  8. S. V. Aleshin, “Automaton representation of a free group”, Discrete Math. Appl., 21:4 (2011), 407–434  mathnet  crossref  crossref  mathscinet  elib
  9. R. I. Grigorchuk, “Some topics in the dynamics of group actions on rooted trees”, Proc. Steklov Inst. Math., 273 (2011), 64–175  mathnet  crossref  mathscinet  zmath  isi  elib
Previous
1
2