28 citations to 10.1016/j.jmaa.2020.124147 (Crossref Cited-By Service)
  1. Molla Basir Ahamed, “The sharp refined Bohr–Rogosinski inequalities for certain classes of harmonic mappings”, Complex Variables and Elliptic Equations, 69, no. 4, 2024, 586  crossref
  2. Molla Basir Ahamed, Vasudevarao Allu, Himadri Halder, “Bohr radius for certain classes of close-to-convex harmonic mappings”, Anal.Math.Phys., 11, no. 3, 2021, 111  crossref
  3. Vasudevarao Allu, Himadri Halder, “Bohr Phenomenon for Certain Close-to-Convex Analytic Functions”, Comput. Methods Funct. Theory, 22, no. 3, 2022, 491  crossref
  4. Hidetaka Hamada, Tatsuhiro Honda, “Bohr Radius for Pluriharmonic Mappings in Separable Complex Hilbert Spaces”, Bull. Malays. Math. Sci. Soc., 47, no. 2, 2024, 47  crossref
  5. Farit Gabidinovich Avkhadiev, Ilgiz Rifatovich Kayumov, Semen Rafailovich Nasyrov, “Ýêñòðåìàëüíûå ïðîáëåìû â ãåîìåòðè÷åñêîé òåîðèè ôóíêöèé”, Óñïåõè ìàòåìàòè÷åñêèõ íàóê, 78, no. 2(470), 2023, 3  crossref
  6. S. Ponnusamy, E.S. Shmidt, V.V. Starkov, “The Bohr radius and its modifications for linearly invariant families of analytic functions”, Journal of Mathematical Analysis and Applications, 533, no. 1, 2024, 128039  crossref
  7. Molla Basir Ahamed, Vasudevarao Allu, “Bohr phenomenon for certain classes of harmonic mappings”, Rocky Mountain J. Math., 52, no. 4, 2022  crossref
  8. Gang Liu, Saminathan Ponnusamy, “Improved Bohr inequality for harmonic mappings”, Mathematische Nachrichten, 296, no. 2, 2023, 716  crossref
  9. D. M. Khammatova, “Refinement of Powered Bohr Inequality”, Lobachevskii J Math, 43, no. 10, 2022, 2954  crossref
  10. Vasudevarao Allu, Nirupam Ghosh, “Bohr type inequality for Cesáro and Bernardi integral operator on simply connected domain”, Proc Math Sci, 133, no. 2, 2023, 22  crossref
1
2
3
Next