11 citations to 10.1088/1751-8113/46/29/295201 (Crossref Cited-By Service)
  1. Yulia Yu Bagderina, “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, J. Phys. A: Math. Theor., 49, no. 15, 2016, 155202  crossref
  2. Vera V. Kartak, ““Painlevé 34” equation: Equivalence test”, Communications in Nonlinear Science and Numerical Simulation, 19, no. 9, 2014, 2993  crossref
  3. Yulia Yu. Bagderina, Nikolai N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, Journal of Mathematical Physics, 56, no. 1, 2015, 013507  crossref
  4. Yu. Yu. Bagderina, “Group classification of projective type second-order ordinary differential equations”, J. Appl. Ind. Math., 10, no. 1, 2016, 37  crossref
  5. Yu. Yu. Bagderina, “Necessary Conditions for Point Equivalence of Second-Order Odes to the Sixth Painlevé Equation”, J Math Sci, 242, no. 5, 2019, 595  crossref
  6. C. Tsaousi, R. Tracinà, C. Sophocleous, “Differential invariants for third-order evolution equations”, Communications in Nonlinear Science and Numerical Simulation, 20, no. 2, 2015, 352  crossref
  7. Yu. Yu. Bagderina, “Equivalence of second-order ordinary differential equations to Painlevé equations”, Theor Math Phys, 182, no. 2, 2015, 211  crossref
  8. Yu. Yu. Bagderina, “Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters”, Theor Math Phys, 202, no. 3, 2020, 295  crossref
  9. Dmitry I. Sinelshchikov, Ilia Yu. Gaiur, Nikolay A. Kudryashov, “Lax representation and quadratic first integrals for a family of non-autonomous second-order differential equations”, Journal of Mathematical Analysis and Applications, 480, no. 1, 2019, 123375  crossref
  10. Dmitry I. Sinelshchikov, “On linearizability via nonlocal transformations and first integrals for second-order ordinary differential equations”, Chaos, Solitons & Fractals, 141, 2020, 110318  crossref
1
2
Next