20 citations to 10.1016/0375-9601(96)00570-1 (Crossref Cited-By Service)
  1. Boris Dubrovin, Tamara Grava, Christian Klein, Antonio Moro, “On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations”, J Nonlinear Sci, 25, no. 3, 2015, 631  crossref
  2. Tamara Grava, Christian Klein, “Numerical solution of the small dispersion limit of Korteweg—de Vries and Whitham equations”, Comm Pure Appl Math, 60, no. 11, 2007, 1623  crossref
  3. V. E. Adler, M. P. Kolesnikov, “Non-autonomous reductions of the KdV equation and multi-component analogs of the Painlevé equations P34 and P3”, Journal of Mathematical Physics, 64, no. 10, 2023, 101505  crossref
  4. B. I. Suleimanov, “Asymptotics of the Gurevich-Pitaevskii universal special solution of the Korteweg-de Vries equation as |x| → ∞”, Proc. Steklov Inst. Math., 281, no. S1, 2013, 137  crossref
  5. B. I. Suleimanov, ““Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom”, Funct Anal Its Appl, 48, no. 3, 2014, 198  crossref
  6. V.R. Kudashev, B.I. Suleimanov, “The effect of small dissipation on the onset of one-dimensional shock waves”, Journal of Applied Mathematics and Mechanics, 65, no. 3, 2001, 441  crossref
  7. Tom Claeys, “Pole-free solutions of the first Painlevé hierarchy and non-generic critical behavior for the KdV equation”, Physica D: Nonlinear Phenomena, 241, no. 23-24, 2012, 2226  crossref
  8. T. Grava, T. Claeys, “The KdV Hierarchy: Universality and a Painlevé Transcendent”, International Mathematics Research Notices, 2012, no. 22, 2012, 5063  crossref
  9. A. M. Kamchatnov, “Self-similar wave breaking in dispersive Korteweg-de Vries hydrodynamics”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, no. 2, 2019, 023106  crossref
  10. Boris Dubrovin, New Trends in Mathematical Physics, 2009, 231  crossref
1
2
Next