- Everton M. C. Abreu, Jorge Ananias Neto, Albert C. R. Mendes, Nélio Sasaki, “Abelian and non-Abelian considerations on compressible fluids with Maxwell-type equations and minimal coupling with the electromagnetic field”, Phys. Rev. D, 91, no. 12, 2015, 125011
- Yeontaek Choi, Byung-Gu Kim, Changhoon Lee, “Alignment of velocity and vorticity and the intermittent distribution of helicity in isotropic turbulence”, Phys. Rev. E, 80, no. 1, 2009, 017301
- Viktor L. Ginzburg, Boris Khesin, “Steady fluid flows and symplectic geometry”, Journal of Geometry and Physics, 14, no. 2, 1994, 195
- Tzihong Chiueh, “Dynamical quantum chaos as fluid turbulence”, Phys. Rev. E, 57, no. 4, 1998, 4150
- Nathan Kleeorin, Igor Rogachevskii, Dmitry Sokoloff, Dmitry Tomin, “Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows”, Phys. Rev. E, 79, no. 4, 2009, 046302
- F. Califano, R. Rashad, S. Stramigioli, “A differential geometric description of thermodynamics in continuum mechanics with application to Fourier–Navier–Stokes fluids”, Physics of Fluids, 34, no. 10, 2022, 107113
- D. MacTaggart, A. Valli, “Magnetic helicity in multiply connected domains”, J. Plasma Phys., 85, no. 5, 2019, 775850501
- Nishant K. Singh, Maarit J. Käpylä, Axel Brandenburg, Petri J. Käpylä, Andreas Lagg, Ilpo Virtanen, “Bihelical Spectrum of Solar Magnetic Helicity and Its Evolution”, ApJ, 863, no. 2, 2018, 182
- “Geometrical Patterns of the Atmospheric Flow Fields”, Chinese J of Geophysics, 47, no. 4, 2004, 667
- Y. Brenier, “The dual Least Action Problem for an ideal, incompressible fluid”, Arch. Rational Mech. Anal., 122, no. 4, 1993, 323