27 citations to 10.2478/v10006-009-0016-4 (Crossref Cited-By Service)
  1. Antonio Andre Novotny, Katarzyna Szulc, Antoni Zochowski, 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), 2012, 131  crossref
  2. M. Hintermüller, V. A. Kovtunenko, “From shape variation to topological changes in constrained minimization: a velocity method-based concept”, Optimization Methods and Software, 26, no. 4-5, 2011, 513  crossref
  3. Audric Drogoul, Gilles Aubert, “The topological gradient method for semi-linear problems and application to edge detection and noise removal”, IPI, 10, no. 1, 2016, 51  crossref
  4. S.M. Giusti, J. Sokołowski, J. Stebel, “On Topological Derivatives for Contact Problems in Elasticity”, J Optim Theory Appl, 165, no. 1, 2015, 279  crossref
  5. Samuel Amstutz, Alain Bonnafé, “Topological derivatives for a class of quasilinear elliptic equations”, Journal de Mathématiques Pures et Appliquées, 107, no. 4, 2017, 367  crossref
  6. Elena Beretta, Andrea Manzoni, Luca Ratti, “A reconstruction algorithm based on topological gradient for an inverse problem related to a semilinear elliptic boundary value problem”, Inverse Problems, 33, no. 3, 2017, 035010  crossref
  7. S. M. Giusti, Jan Sokołowski, Jan Stebel, 101, Optimization with PDE Constraints, 2014, 203  crossref
  8. Matteo Dalla Riva, Riccardo Molinarolo, Paolo Musolino, “Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem”, Nonlinear Analysis, 191, 2020, 111645  crossref
  9. Kevin Sturm, “Topological sensitivities via a Lagrangian approach for semilinear problems”, Nonlinearity, 33, no. 9, 2020, 4310  crossref
  10. Samuel Amstutz, “An introduction to the topological derivative”, EC, 39, no. 1, 2022, 3  crossref
Previous
1
2
3
Next