- Ioannis Bakas, “Renormalization group flows and continual Lie algebras”, J. High Energy Phys., 2003, no. 08, 2003, 013

- Daniel Finley, John K McIver, “Solutions of the sDiff(2)Toda equation with
SU
(2) symmetry”, Class. Quantum Grav., 27, no. 14, 2010, 145001

- Carlos Castro, “A Moyal quantization of the continuous Toda field”, Physics Letters B, 413, no. 1-2, 1997, 53

- Kanehisa Takasaki, “Volume-preserving diffeomorphisms in integrable deformations of self-dual gravity”, Physics Letters B, 285, no. 3, 1992, 187

- J D FinleyIII, John K McIver, “Non-Abelian infinite algebra of generalized symmetries for the SDiff(2)Toda equation”, J. Phys. A: Math. Gen., 37, no. 22, 2004, 5825

- Анатолий Моисеевич Вершик, Anatolii Moiseevich Vershik, Борис Б Шойхет, Boris B Shoikhet, “Градуированные алгебры Ли, подалгебра Картана которых есть алгебра многочленов одной переменной”, ТМФ, 123, no. 2, 2000, 345

- David Fairlie, Cosmas Zachos, “Vertex ring-indexed Lie algebras”, Physics Letters B, 620, no. 3-4, 2005, 195

- M. V. Saveliev, A. M. Vershik, 375, Differential Geometric Methods in Theoretical Physics, 1991, 162

- M. V. Saveliev, P. Sorba, “Solution of the Cauchy problem for a continuous limit of the Toda lattice and its superextension”, Lett Math Phys, 22, no. 2, 1991, 119

- D. Lebedev, S. Pakuliak, “Zakharov-Shabat technique with quantized spectral parameter in the theory of integrable models”, Physics Letters A, 160, no. 2, 1991, 173
