- Clemens Heuberger, “All solutions to Thomas’ family of Thue equations over imaginary quadratic number fields”, Journal of Symbolic Computation, 41, no. 9, 2006, 980
- Bernadette Faye, Bilizimbéyé Edjeou, “On the problem of Pillai with Pell numbers, Pell–Lucas numbers and powers of 3”, Int. J. Number Theory, 19, no. 01, 2023, 71
- T. N. Shorey, Number Theory, 2000, 463
- Alan Filipin, Mirela Jukić Bokun, Ivan Soldo, “On $D(-1)$-triples $\{1,4p^2+1,1-p\}$ in the ring ${{\mathbb {Z}}}[\sqrt{-p}]$ with a prime p”, Period Math Hung, 85, no. 2, 2022, 292
- Bilizimbéyé Edjeou, Bernadette Faye, Carlos A. Gómez, Florian Luca, “On Y-coordinates of Pell equations which are Lucas numbers”, Ramanujan J, 59, no. 4, 2022, 1091
- Salah Eddine Rihane, Euloge B. Tchammou, Alain Togbé, “Pell–Lucas Numbers as Sum of Same Power of Consecutive Pell Numbers”, Mediterr. J. Math., 19, no. 6, 2022, 252
- László Szalay, Volker Ziegler, “S-Diophantine quadruples with S = {2, q}”, Int. J. Number Theory, 11, no. 03, 2015, 849
- Eric F. Bravo, Carlos Alexis Gómez Ruiz, Florian Luca, “X-coordinates of Pell equations as sums of two tribonacci numbers”, Period Math Hung, 77, no. 2, 2018, 175
- Alain Togbé, “On the solutions of a parametric family of cubic Thue equations”, Bull Braz Math Soc, New Series, 39, no. 4, 2008, 537
- Xiaowei Pan, “An upper bound for solutions of the Lebesgue-Nagell equation x 2 + a 2 = y n $x^{2}+a^{2}=y^{n}$”, J Inequal Appl, 2016, no. 1, 2016, 209