9 citations to 10.18514/MMN.2014.1176 (Crossref Cited-By Service)
  1. Jing-Jing Chen, Jian-Jun Lei, Bo-Yong Long, “Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means”, J Inequal Appl, 2017, no. 1, 2017, 251  crossref
  2. Ling Zhu, “New bounds for the exponential function with cotangent”, J Inequal Appl, 2018, no. 1, 2018, 106  crossref
  3. Hui-Zuo Xu, Yu-Ming Chu, Wei-Mao Qian, “Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means”, J Inequal Appl, 2018, no. 1, 2018, 127  crossref
  4. Hao-Chuan Cui, Nan Wang, Bo-Yong Long, “Optimal Bounds for the Neuman-Sándor Mean in terms of the Convex Combination of the First and Second Seiffert Means”, Mathematical Problems in Engineering, 2015, 2015, 1  crossref
  5. Fei Yan, Qin Gao, “Extensions and demonstrations of Hölder’s inequality”, J Inequal Appl, 2019, no. 1, 2019, 97  crossref
  6. Ravi Prakash Agarwal, Erdal Karapinar, Marko Kostić, Jian Cao, Wei-Shih Du, “A Brief Overview and Survey of the Scientific Work by Feng Qi”, Axioms, 11, no. 8, 2022, 385  crossref
  7. Wen-Hui Li, Qi-Xia Shen, Bai-Ni Guo, “Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean”, Axioms, 11, no. 7, 2022, 304  crossref
  8. Wen-Hui Li, Peng Miao, Bai-Ni Guo, “Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means”, Axioms, 11, no. 5, 2022, 236  crossref
  9. Wei-Mao Qian, Tie-Hong Zhao, Yu-Pei Lv, “Refinements of bounds for the arithmetic mean by new Seiffert-like means”, AIMS Mathematics, 6, no. 8, 2021, 9036  crossref