- Yuri Viatcheslavovich Malykhin, “Поперечники и жесткость”, Математический сборник, 215, no. 4, 2024, 117
- Bertrand Michel, Anthony Nouy, “Learning with tree tensor networks: Complexity estimates and model selection”, Bernoulli, 28, no. 2, 2022
- Robert J. Kunsch, “Linear Monte Carlo quadrature with optimal confidence intervals”, Journal of Complexity, 83, 2024, 101851
- Glenn Byrenheid, Janina Hübner, Markus Weimar, “Rate-optimal sparse approximation of compact break-of-scale embeddings”, Applied and Computational Harmonic Analysis, 65, 2023, 40
- Laura Lippert, Daniel Potts, Tino Ullrich, “Fast hyperbolic wavelet regression meets ANOVA”, Numer. Math., 154, no. 1-2, 2023, 155
- M Wnuk, M Gnewuch, “Randomized sparse grid algorithms for multivariate integration on Haar wavelet spaces”, IMA Journal of Numerical Analysis, 43, no. 1, 2023, 73
- Lutz Kämmerer, Tino Ullrich, Toni Volkmer, “Worst-case Recovery Guarantees for Least Squares Approximation Using Random Samples”, Constr Approx, 54, no. 2, 2021, 295
- F. Dai, V. Temlyakov, “Universal Sampling Discretization”, Constr Approx, 58, no. 3, 2023, 589
- Matthieu Dolbeault, David Krieg, Mario Ullrich, “A Sharp Upper Bound for Sampling Numbers in $L_2$”, SSRN Journal, 2022
- Michael Penwarden, Shandian Zhe, Akil Narayan, Robert M. Kirby, “Physics-Informed Neural Networks (PINNs) for Parameterized PDEs: A Metalearning Approach”, SSRN Journal, 2021