20 citations to 10.1007/978-3-030-35914-0 (Crossref Cited-By Service)
  1. Ya. О. Baranetskij, І. І. Demkiv, P. І. Kalenyuk, “Nonlocal Problem with Multipoint Perturbations of the Birkhoff Strongly Regular Boundary Conditions for an Even-Order Differential Operator”, J Math Sci, 270, no. 1, 2023, 19  crossref
  2. A. Kh. Khanmamedov, D. H. Orudjov, “On transformation operators for the Schrödinger equation with an additional periodic complex potential”, Bol. Soc. Mat. Mex., 29, no. 2, 2023, 36  crossref
  3. Vladimir E. Fedorov, Nikolay V. Filin, “On Strongly Continuous Resolving Families of Operators for Fractional Distributed Order Equations”, Fractal Fract, 5, no. 1, 2021, 20  crossref
  4. Vladimir E. Fedorov, “Generators of Analytic Resolving Families for Distributed Order Equations and Perturbations”, Mathematics, 8, no. 8, 2020, 1306  crossref
  5. Dmitrii Karp, Elena Prilepkina, “Beyond the Beta Integral Method: Transformation Formulas for Hypergeometric Functions via Meijer’s G Function”, Symmetry, 14, no. 8, 2022, 1541  crossref
  6. Sergey M. Sitnik, Vladimir E. Fedorov, Nikolay V. Filin, Viktor A. Polunin, “On the Solvability of Equations with a Distributed Fractional Derivative Given by the Stieltjes Integral”, Mathematics, 10, no. 16, 2022, 2979  crossref
  7. Shakhobiddin Karimov, Yorkinoy Tulasheva, “Solution of an Initial Boundary Value Problem for a Multidimensional Fourth-Order Equation Containing the Bessel Operator”, Mathematics, 12, no. 16, 2024, 2503  crossref
  8. Fatima Gidovna Khushtova, “Некоторые интегральные преобразования одной функции Фокса с четырьмя параметрами”, Вестник Самарского государственного технического университета. Серия «Физико-математические науки», 28, no. 2, 2024, 367  crossref
  9. S. M. Sitnik, O. V. Skoromnik, M. V. Papkovich, “A Special Type of Multi-Dimensional Integral Transform with Fox $\boldsymbol{H}$-Function in Lebesgue-type Weighted Spaces”, Lobachevskii J Math, 45, no. 9, 2024, 4613  crossref
  10. Auwalu Sa’idu, Hikmet Koyunbakan, “Transmutation of conformable Sturm-Liouville operator with exactly solvable potential”, Filomat, 37, no. 11, 2023, 3383  crossref
Previous
1
2