- Yaroslav D. Sergeyev, Antonio Candelieri, Dmitri E. Kvasov, Riccardo Perego, “Safe global optimization of expensive noisy black-box functions in the $\delta $-Lipschitz framework”, Soft Comput, 24, no. 23, 2020, 17715
- A. Galántai, J. Abaffy, “Always convergent iteration methods for nonlinear equations of Lipschitz functions”, Numer Algor, 69, no. 2, 2015, 443
- Oleg Valerievich Khamisov, “Нахождение корней нелинейного уравнения методом вогнутых опорных функций”, Математические заметки, 98, no. 3, 2015, 427
- Dmitri E. Kvasov, Yaroslav D. Sergeyev, “Univariate geometric Lipschitz global optimization algorithms”, Numerical Algebra, Control & Optimization, 2, no. 1, 2012, 69
- Yaroslav D. Sergeyev, Marat S. Mukhametzhanov, Dmitri E. Kvasov, Daniela Lera, “Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization”, J Optim Theory Appl, 171, no. 1, 2016, 186
- O. V. Khamisov, “Finding roots of nonlinear equations using the method of concave support functions”, Math Notes, 98, no. 3-4, 2015, 484
- A. Galántai, “Always convergent methods for nonlinear equations of several variables”, Numer Algor, 78, no. 2, 2018, 625
- Daniela Lera, Yaroslav D. Sergeyev, “Acceleration of Univariate Global Optimization Algorithms Working with Lipschitz Functions and Lipschitz First Derivatives”, SIAM J. Optim., 23, no. 1, 2013, 508
- Yaroslav D. Sergeyev, Dmitri E. Kvasov, Marat S. Mukhametzhanov, “Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms”, Mathematics and Computers in Simulation, 141, 2017, 96