- Matthias Hieber, Jürgen Saal, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2018, 117
- M. Chipot, K. Kaulakytė, K. Pileckas, W. Xue, “On nonhomogeneous boundary value problems for the stationary Navier–Stokes equations in two-dimensional symmetric semi-infinite outlets”, Anal. Appl., 15, no. 04, 2017, 543
- Константин Пилецкас, Konstantin Pileckas, “Об асимптотике решений стационарной системы уравнений Навье - Стокса в области типа слоя”, Матем. сб., 193, no. 12, 2002, 69
- Michel Chipot, Sorin Mardare, “Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction”, Journal de Mathématiques Pures et Appliquées, 90, no. 2, 2008, 133
- Noah Stevenson, Ian Tice, “Traveling Wave Solutions to the Multilayer Free Boundary Incompressible Navier–Stokes Equations”, SIAM J. Math. Anal., 53, no. 6, 2021, 6370
- Takayuki Abe, “On a resolvent estimate of the Stokes equation with Neumann–Dirichlet‐type boundary condition on an infinite layer”, Math Methods in App Sciences, 27, no. 9, 2004, 1007
- Teppei Kobayashi, “Steady Navier-Stokes equations with Poiseuille and Jeffery-Hamel flows in $\mathbb R^2$”, Rocky Mountain J. Math., 49, no. 6, 2019
- Kaijian Sha, Yun Wang, Chunjing Xie, “Uniqueness and uniform structural stability of Poiseuille flows with large fluxes in two-dimensional strips”, Math. Ann., 2023
- K. Pileckas, 4, 2007, 445
- K. Pileckas, M. Specovius-Neugebauer, “Spatial behavior of solutions to the time periodic Stokes system in a three dimensional layer”, Journal of Differential Equations, 263, no. 10, 2017, 6317