- Luigi Provenzano, “A note on the Neumann eigenvalues of the biharmonic operator”, Math Methods in App Sciences, 41, no. 3, 2018, 1005
- Gerassimos Barbatis, Pier Domenico Lamberti, “SPECTRAL STABILITY ESTIMATES FOR ELLIPTIC OPERATORS SUBJECT TO DOMAIN TRANSFORMATIONS WITH NON‐UNIFORMLY BOUNDED GRADIENTS”, Mathematika, 58, no. 2, 2012, 324
- Davide Buoso, Pier Domenico Lamberti, “Shape deformation for vibrating hinged plates”, Math Methods in App Sciences, 37, no. 2, 2014, 237
- G. Karapetyan, N. Saribekyan, “Spectral stability of higher order semi-elliptic operators”, J. Contemp. Mathemat. Anal., 51, no. 1, 2016, 1
- Gerassimos Barbatis, Victor I. Burenkov, Pier Domenico Lamberti, 12, Around the Research of Vladimir Maz'ya II, 2010, 23
- Davide Buoso, Pier Domenico Lamberti, “Eigenvalues of polyharmonic operators on variable domains”, ESAIM: COCV, 19, no. 4, 2013, 1225
- Francesco Ferraresso, Pier Domenico Lamberti, “On a Babuška Paradox for Polyharmonic Operators: Spectral Stability and Boundary Homogenization for Intermediate Problems”, Integr. Equ. Oper. Theory, 91, no. 6, 2019, 55
- Vladimir Gol’dshtein, Valerii Pchelintsev, Alexander Ukhlov, “Spectral stability estimates of Dirichlet divergence form elliptic operators”, Anal.Math.Phys., 10, no. 4, 2020, 74
- Begoña Barrios, Luigi Montoro, Ireneo Peral, Fernando Soria, “Neumann conditions for the higher order s-fractional Laplacian (−Δ)su with s>1”, Nonlinear Analysis, 193, 2020, 111368
- V. I. Burenkov, V. Gol'dshtein, A. Ukhlov, “Conformal spectral stability estimates for the Neumann Laplacian”, Mathematische Nachrichten, 289, no. 17-18, 2016, 2133