11 citations to 10.1007/s10883-021-09539-0 (Crossref Cited-By Service)
  1. Victor Zvyagin, Mikhail Turbin, “Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order”, J. Fixed Point Theory Appl., 25, no. 3, 2023, 63  crossref
  2. Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29, no. 2, 2023, 54  crossref
  3. A. S. Ustiuzhaninova, “Uniform Attractors for the Modified Kelvin–Voigt Model”, Diff Equat, 57, no. 9, 2021, 1165  crossref
  4. V. G. Zvyagin, M. V. Turbin, “Solvability of the Initial-Boundary Value Problem for the Kelvin–Voigt Fluid Motion Model with Variable Density”, Dokl. Math., 107, no. 1, 2023, 9  crossref
  5. Viktor Grigorevich Zvyagin, Mikhail Vyacheslavovich Turbin, “Теорема существования слабых решений начально-краевой задачи для неоднородной несжимаемой модели Кельвина-Фойгта без ограничения снизу на начальное значение плотности”, Математические заметки, 114, no. 4, 2023, 628  crossref
  6. V. G. Zvyagin, M. V. Turbin, “SOLVABILITY OF THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE KELVIN–VOIGT FLUID MOTION MODEL WITH VARIABLE DENSITY”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 509, no. 1, 2023, 13  crossref
  7. Mikhail Turbin, Anastasiia Ustiuzhaninova, “Pullback attractors for weak solution to modified Kelvin-Voigt model”, EECT, 11, no. 6, 2022, 2055  crossref
  8. V. G. Zvyagin, M. V. Turbin, “An Existence Theorem for Weak Solutions of the Initial–Boundary Value Problem for the Inhomogeneous Incompressible Kelvin–Voigt Model in Which the Initial Value of Density is Not Bounded from Below”, Math Notes, 114, no. 3-4, 2023, 630  crossref
  9. M. V. Turbin, A. S. Ustiuzhaninova, “Convergence of Attractors for an Approximation to Attractors of a Modified Kelvin–Voigt Model”, Comput. Math. and Math. Phys., 62, no. 2, 2022, 325  crossref
  10. M. V. Turbin, A. S. Ustiuzhaninova, “Solvability of an Initial–Boundary Value Problem for the Modified Kelvin–Voigt Model with Memory along Fluid Motion Trajectories”, Diff Equat, 60, no. 2, 2024, 180  crossref
1
2
Next