- Victor Valentinovich Vedenyapin, Malik-Bakhori Abdurashidovich Negmatov, Nikolai Nikolaevich Fimin, “Уравнения типа Власова и Лиувилля, их микроскопические, энергетические и гидродинамические следствия”, Известия Российской академии наук. Серия математическая, 81, no. 3, 2017, 45
- A. I. Balins'kyy, “On discrete models on one-dimensional lattices with specified Lie algebra of symmetries”, Ukr Math J, 44, no. 9, 1992, 1069
- Maurice A. de Gosson, “Paths of canonical transformations and their quantization”, Rev. Math. Phys., 27, no. 06, 2015, 1530003
- Valery V. Kozlov, “Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability”, Regul. Chaot. Dyn., 23, no. 1, 2018, 26
- Tassos Bountis, Haris Skokos, 10, Complex Hamiltonian Dynamics, 2012, 91
- Weronika Barwicz, Mateusz Wiliński, Henryk Żołaͅdek, “Birkhoff normalization, bifurcations of Hamiltonian systems and the Deprits formula”, J. Fixed Point Theory Appl., 13, no. 2, 2013, 587
- Arjan van der Schaft, Bernhard Maschke, 11712, Geometric Science of Information, 2019, 228
- J. Golenia, O. Ye. Hentosh, A. K. Prykarpatsky, “Integrable three-dimensional coupled nonlinear dynamical systems related to centrally extended operator Lie algebras and their Lax type three-linearization”, centr.eur.j.math., 5, no. 1, 2007, 84
- Enrico Prati, “Generalized clocks in timeless canonical formalism”, J. Phys.: Conf. Ser., 306, 2011, 012013
- Michał Jóźwikowski, Witold Respondek, “A contact covariant approach to optimal control with applications to sub-Riemannian geometry”, Math. Control Signals Syst., 28, no. 3, 2016, 27