24 citations to 10.1515/gmj-2013-0043 (Crossref Cited-By Service)
  1. Chun-Yan Luo, Ting-Song Du, Mehmet Kunt, Yao Zhang, “Certain new bounds considering the weighted Simpson-like type inequality and applications”, J Inequal Appl, 2018, no. 1, 2018, 332  crossref
  2. Artion Kashuri, Rozana Liko, “Some Caputo k-fractional derivatives of Ostrowski type concerning (n+1)-differentiable generalized relative semi-(r;m,p,q,h₁,h₂)-preinvex mappings”, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 68, no. 1, 2018, 973  crossref
  3. Wenjun Liu, Heng Zhang, “Refinements of the weighted generalized trapezoid inequality in terms of cumulative variation and applications”, Georgian Mathematical Journal, 25, no. 1, 2018, 47  crossref
  4. Bo-Yan Xi, Jian Sun, Shu-Ping Bai, “On some Hermite-Hadamard-type integral inequalities for co-ordinated $\boldsymbol{(\alpha, QC)}$- and $\boldsymbol{(\alpha, CJ)}$-convex functions”, Tbilisi Math. J., 8, no. 2, 2015  crossref
  5. Artion Kashuri, Rozana Liko, “Some different type integral inequalities concerning twice differentiable generalized relative semi-$(r; m, h)$-preinvex mappings”, Tbilisi Math. J., 11, no. 1, 2018  crossref
  6. Artion Kashuri, Rozana Liko, “On some k-fractional integral inequalities of Hermite–Hadamard type for twice differentiable generalized beta (r, g)-preinvex functions”, Journal of Applied Analysis, 25, no. 1, 2019, 59  crossref
  7. Yao Zhang, Ting-Song Du, Hao Wang, Yan-Jun Shen, Artion Kashuri, “Extensions of different type parameterized inequalities for generalized ( m , h ) $(m,h)$ -preinvex mappings via k-fractional integrals”, J Inequal Appl, 2018, no. 1, 2018, 49  crossref
  8. Leila Nasiri, Mahmood Shakoori, “Some inequalities of Hermite–Hadamard, Ostrowski and Simpson type for (ξ,m,MT)-preinvex functions”, Asian-European J. Math., 12, no. 07, 2019, 1950090  crossref
  9. Muhammad Amer Latif, “Hermite–Hadamard-type inequalities for geometrically r-convex functions in terms of Stolarsky’s mean with applications to means”, Adv Differ Equ, 2021, no. 1, 2021, 371  crossref
  10. Yao Zhang, Ting-Song Du, Hao Wang, Yan-Jun Shen, “Different types of quantum integral inequalities via ( α , m ) $(\alpha ,m)$ -convexity”, J Inequal Appl, 2018, no. 1, 2018, 264  crossref
Previous
1
2
3
Next