- Sandhya Jain, Arun Pal Singh, Megha Madan, Pankaj Jain, “BOUNDEDNESS OF DUNKL-HAUSDORFF OPERATOR FOR RADIALLY DECREASING FUNCTIONS AND MONOTONE WEIGHTS ON $\mathbb {R}^{n}$”, J Math Sci, 2024
- A. Gogatishvili, V. D. Stepanov, “Operators on cones of monotone functions”, Dokl. Math., 86, no. 1, 2012, 562
- G. E. Shambilova, “The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions”, Sib Math J, 55, no. 4, 2014, 745
- M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Anal Math, 37, no. 2, 2011, 83
- Â.Ä. Ñòåïàíîâ, Ã.Ý. Øàìáèëîâà, “ÎÁ ÎÃÐÀÍÈ×ÅÍÍÎÑÒÈ ÊÂÀÇÈËÈÍÅÉÍÛÕ ÈÍÒÅÃÐÀËÜÍÛÕ ÎÏÅÐÀÒÎÐΠÈÒÅÐÀÖÈÎÍÍÎÃÎ ÒÈÏÀ Ñ ßÄÐÀÌÈ ÎÉÍÀÐÎÂÀ ÍÀ ÊÎÍÓÑÅ ÌÎÍÎÒÎÍÍÛÕ ÔÓÍÊÖÈÉ”, Äîêëàäû Àêàäåìèè íàóê, no. 1, 2017, 17
- Pankaj Jain, Arun Pal Singh, Monika Singh, Vladimir D. Stepanov, “Sawyer's duality principle for grand Lebesgue spaces”, Mathematische Nachrichten, 292, no. 4, 2019, 841
- Luboš Pick, 13, Around the Research of Vladimir Maz'ya III, 2010, 279
- Amiran Gogatishvili, Martin Křepela, Luboš Pick, Filip Soudský, “Embeddings of Lorentz-type spaces involving weighted integral means”, Journal of Functional Analysis, 273, no. 9, 2017, 2939
- Maria Johansson, 157, Inequalities and Applications, 2008, 97
- V. D. Stepanov, G. E. Shambilova, “Boundedness of quasilinear integral operators on the cone of monotone functions”, Sib Math J, 57, no. 5, 2016, 884