- S. V. Konyagin, E. D. Livshits, “On adaptive estimators in statistical learning theory”, Proc. Steklov Inst. Math., 260, no. 1, 2008, 185
- Shaobo Lin, Jinshan Zeng, Jian Fang, Zongben Xu, “Learning Rates of lq Coefficient Regularization Learning with Gaussian Kernel”, Neural Computation, 26, no. 10, 2014, 2350
- Rui Li, Youming Liu, “Wavelet Optimal Estimations for Density Functions under Severely Ill-Posed Noises”, Abstract and Applied Analysis, 2013, 2013, 1
- Andreas Hofinger, Friedrich Pillichshammer, “Learning a function from noisy samples at a finite sparse set of points”, Journal of Approximation Theory, 161, no. 2, 2009, 448
- Shao-Bo Lin, “Nonparametric regression using needlet kernels for spherical data”, Journal of Complexity, 50, 2019, 66
- Rui Li, YouMing Liu, “Supersmooth density estimations over L
p
risk by wavelets”, Sci. China Math., 60, no. 10, 2017, 1901 - Gilles Blanchard, Nicole Mücke, “Optimal Rates for Regularization of Statistical Inverse Learning Problems”, Found Comput Math, 18, no. 4, 2018, 971
- Gilles Blanchard, Nicole Mücke, “Kernel regression, minimax rates and effective dimensionality: Beyond the regular case”, Anal. Appl., 18, no. 04, 2020, 683
- Andrew J. Kurdila, Sai Tej Paruchuri, Nathan Powell, Jia Guo, Parag Bobade, Boone Estes, Haoran Wang, “Approximation of discrete and orbital Koopman operators over subsets and manifolds”, Nonlinear Dyn, 112, no. 8, 2024, 6291
- Mark J. van der Laan, Sandrine Dudoit, Aad W. van der Vaart, “The cross-validated adaptive epsilon-net estimator”, Statistics & Decisions, 24, no. 3, 2006, 373