- Alfredo Lorenzi, Vladimir G. Romanov, “Recovering two Lamé kernels in a viscoelastic system”, Inverse Problems & Imaging, 5, no. 2, 2011, 431
- O Yu Imanuvilov, M Yamamoto, “Carleman estimate and an inverse source problem for the Kelvin–Voigt model for viscoelasticity”, Inverse Problems, 35, no. 12, 2019, 125001
- V.G. Romanov, M. Yamamoto, “Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement”, Applicable Analysis, 89, no. 3, 2010, 377
- V. G. Romanov, “A three-dimensional inverse problem of viscoelasticity”, Dokl. Math., 84, no. 3, 2011, 833
- Maya de Buhan, Axel Osses, “Un résultat de stabilité pour la récupération d'un paramètre du système de la viscoélasticité 3D”, Comptes Rendus. Mathématique, 347, no. 23-24, 2009, 1373
- Zh. D. Totieva, “Determining the Kernel of the Viscoelasticity Equation in a Medium with Slightly Horizontal Homogeneity”, Sib Math J, 61, no. 2, 2020, 359
- Durdimurod K. Durdiev, Zhonibek Zh. Zhumaev, “Memory kernel reconstruction problems in the integro‐differential equation of rigid heat conductor”, Math Methods in App Sciences, 45, no. 14, 2022, 8374
- V. G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6, no. 3, 2012, 360
- V. G. Romanov, “Problem of kernel recovering for the viscoelasticity equation”, Dokl. Math., 86, no. 2, 2012, 608
- Durdimurod Kalandarovich Durdiev, Jonibek Jamolovich Jumayev, Dilshod Dilmurodovich Atoev, “Inverse problem on determining two kernels in integro-differential equation of heat flow”, Ufimsk. Mat. Zh., 15, no. 2, 2023, 119